1Oa-d was performed under similar conditions **as** described above and the result was summarized in Table 111.

6-Phenyl-6-(phenyltho)hex-S-enal(6a): IR (neat) 1730 *cm-';* ¹H NMR (CDCI₃) δ 1.42-2.87 (m, 6 H), 5.93 (t, $J = 7.0$ Hz, 0.75 H), 6.33 (t, *J* = 7.0 Hz, 0.25 H), *(E/Z* = 7525) 6.82-7.65 (m, 10 H), 9.45-9.78 (m, 1 H); MS, *m/e* 282 (M'). Anal. Calcd for Cl.&180S: C, 76.56; H, 6.42. Found c, 76.38; H, 6.32.1 . **7-Phenyl-7-(phenylthio)hept-6-enen-2-one** (6b): IR (neat) ¹⁷²⁰

cm⁻¹; ¹H NMR (CDCl₃) δ 1.08-2.61 (m, 9 H), 6.30 (t, $J = 7.0$ Hz, 0.67 H), 6.78 (t, *J* = 5.0 Hz, 0.33 H) *(E/Z* = 67:33), 6.42-7.72 (m, 10 H); MS, m/e 296 (M⁺). Anal. Calcd for C₁₉H₂₀OS: C, 76.99; H, 6.80. Found: C, 76.54; H, 6.77.

8-Phenyl-8-(phenyltho)oct-7-enal(6d): IR (neat) 1730 cm-'; ¹H NMR (CDCl₃) δ 1.12-1.92 (m, 6 H), 1.92-2.78 (m, 4 H), 6.05 $(t, J = 7.5$ Hz, 0.6 H), 6.35 $(t, J = 7.5$ Hz, 0.4 H) $(E/Z = 60:40)$, 6.92-7.40 (m, 10 H), 9.55-9.75 (m, 1 H); MS, *m/e* 310 (M'). **Anal.** Calcd for $C_{20}H_{22}OS$; C, 77.38; H, 7.14. Found: C, 77.38; H, 7.13.

9-Phenyl-9-(phenyltho)non-8-en-2-one (6e): IR (neat) 1715 cm⁻¹; ¹H NMR (CDCl₃) δ 0.86-2.73 (m, 13 H), 6.06 (t, $J = 7.0$ Hz, 0.6 H), 6.36 (t, $J = 7.0$ Hz, 0.4 H) $(E/Z = 60:40)$, 6.73-7.66 (m, 10 H); MS, m/e 324 (M⁺). Anal. Calcd for C₂₁H₂₄OS: C, 77.73; H, 7.45. Found: C, 77.70; H, 7.42.

8-Phenyl-8-(phenylthio)oct-7-en-2-one (6g): IR (neat) 1715 cm⁻¹; ¹H NMR (CDCl₃) δ 1.27-2.80 (m, 11 H), 6.03 (t, $J = 7.0$ Hz, 0.25 H), 6.35 (t, *J* = 7.0 Hz, 0.75 H) *(E/Z* = 2575), 7.00-7.42 (m, 10 H), MS, m/e 310 (M⁺). Anal. Calcd for $C_{20}H_{22}OS: C, 77.38;$ H, 7.14. Found: C, 77.17; H, 7.11.

Ring-Opening Reaction **of** trans -2-[Bis(phenylthio) methyl]cyclohexanol **(14).** Cyclohexanol 14 was treated with NCS and triethylamine under typical conditions as described above and the reaction mixture was separated by MPLC using benzene to give 7,7-bis(phenylthio)hept-6-enal (15) (14%)²⁰ and **6,7-bis(phenylthio)-7-chloroheptanol (16)** (14%). 15: IR (neat) 1720 cm⁻¹; ¹H NMR (CDCl₃) δ 1.35-1.81 (m, 4 H), 2.20-2.64 (m, 4 H), 6.23 (t, *J* = 7.4 Hz, 1 H), 7.04-7.40 (m, 10 H), 9.62 (t, *J* = 1.5 Hz, 1 H); MS, m/e 328 (M⁺). Anal. Calcd for C₁₉H₂₀OS₂: C, 69.47; H, 6.14. Found: C, 69.29; H, 6.05. This compound was identified with an authentic sample prepared by the reaction of **5-(ethoxycarbonyl)valeraldehyde** with [bis(phenylthio)(trimethylsilyl)methyl]lithium, followed by reduction (LAH) and oxidation (PPC). 16: IR (neat) 1730 cm⁻¹; ¹H NMR (CDCl₃) δ 1.50-1.87 (m, 6 H), 2.24-2.67 (m, 2 H), 2.77-3.14 (m, 2 H), 6.87-7.40 (m, 10 H), 9.69 (m, 1 H); MS, *m/e* 362 (M'). Anal. Calcd for $C_{19}H_{21}CIOS_2$: C, 62.53; H, 5.80. Found: C, 62.67; H, 6.07.

Reaction **of 7-(Phenylthio)hept-6-enal** Ethylene Acetal (20) with Phenylsulfenyl Chloride. Phenylsulfenyl chloride (0.29 g, 2.0 mmol) was added to a solution of the ethylene acetal 20 (0.53 g, 2.0 mmol) in dry dichloromethane (20 mL) at -10 °C under nitrogen and stirred for 1 h. The mixture was quenched with water (10 **mL),** extracted with ether, washed with brine, dried

(MgS04), and concentrated in vacuo. The residue was purified by MPLC using benzene to give 7-oxo-6-(phenylthio)heptanal ethylene acetal (22) (0.33 g, *60%);* IR (neat) 1730,1585,1480,1442, 1140, 1030 cm-'; 'H NMR (CDCl,) 6 1.27-1.93 (m, 8 H), 3.13-3.73 (m, 1 H), 3.73-4.03 (m, 4 H), 4.16 (t, *J* = 4.2 Hz, 1 H), 7.13-7.47 $(m, 5 H)$, 9.34 (d, $J = 4.1$ Hz, 1 H). Anal. Calcd for C₁₅H₂₀O₃S: C, 64.26; H, 7.19. Found: C, 64.10; H, 7.01.

8-Met hy l-7- (pheny It hio)nona-6 *(E* **or** *2)* ,8-dienal (24). The *E* and Z dienals 24 were prepared from **trans-erythro-cyclohexanol** 23a and the cis-threo isomer 23b, respectively, according to the general procedure $(E, 48\%, \text{ and } Z, 44\%$ yields):²⁰ IR (neat) 3060, 2940,2860,1730,1580,1480,1440 cm-'; 'H NMR (CDC13) 6 *(E* isomer) 1.02-2.58 (m, 8 H), 1.80 (s, 3 H), 4.65-5.02 (m, 2 H), 5.81 *(2* isomer) 1.03-2.67 (m, 8 H), 1.93 (s, 3 H), 4.80-5.10 (m, 2 H), 6.22 (t, *J* = 2.0 Hz, 1 H), 7.23-7.68 (m, 5 H), 9.57 (t, *J* = 2.0 Hz, 1 H); MS, *m/e* 260 (M'). $(t, J = 1.8 \text{ Hz}, 1 \text{ H}), 6.98-7.68 \text{ (m, 5 H)}, 9.60 \text{ (t, } J = 1.8 \text{ Hz}, 1 \text{ H}),$

7-(Phenylthio)non-6-en-8-yn-I-a1 (26): 75% yield by NMR, 25% isolated yield;20 IR (neat) **3700-3100,2950,2870,1720,1580,** 1480, 1440 cm⁻¹; ¹H NMR (CDCl₃) δ 1.25-1.95 (m, 4 H), 2.22-2.65 (m, 4 H), 3.12 (s, 1 H), 6.32 (t, *J* = 7.6 Hz, 1 H), 7.12-7.48 (m, 5 H), 9.72 (t, $J = 1.6$ Hz, 1 H); MS, m/e 244 (M⁺).

7-(Phenylthio)-7-(trimethylsilyl) hept-6-enal (28). A mixture of (E) - and (Z) -heptenals 28^{20} was obtained in 80% yield, which was separeted into pure isomers (ratio, 80:20) by MPLC using benzene. *E* isomer: IR (neat) 3070, 2950, 1735, 1580, 1480, 1440, 1250, 840 cm⁻¹; ¹H NMR (CDCl₃) δ 0.10 (s, 9 H), 1.32-1.85 (m, 4 H), 2.22-2.68 (m, 4 H), 6.54 (t, *J* = 6.8 Hz, 1 H), 7.17 (br s, 5 H), 9.68 (m, 1 H); MS, *m/e* 292 (M'). Anal. Calcd for C₁₆H₂₄OSSi: C, 65.92; H, 8.30. Found: C, 65.61; H, 8.28. *Z* isomer: IR (neat) 3070,2950,1730,1580,1480,1250,840 cm-'; 'H NMR $(CDCl₃)$ δ 0.07 (s, 9 H), 1.40-1.90 (m, 4 H), 2.07-2.64 (m, 4 H), 6.09 (t, *J* = 5.0 Hz, 1 H), 7.27 (br s, 5 H), 9.62 (t, *J* = 2.0 Hz, 1 H); MS, m/e 292 (M⁺). Anal. Calcd for C₁₆H₂₄OSSi: C, 65.92; H, 8.30. Found: C, 66.34; H, 8.31. The minor (Z) -28 was gradually isomerized to (E) -28 on standing at room temperature. When the ring-opening reaction was performed by using an excessive amount of NCS (1.5 equiv), **7-(phenylthio)hept-G(E)-enal(29)** was isolated as nearly one stereoisomer in 60% yield: IR (neat) 2940, 1730, 1585, 1480, 1440 cm⁻¹; ¹H NMR (CDCl₃) δ 1.37–1.77 (m, 4 H), 2.10-2.57 (m, 4 H), 5.60-6.30 (m, 2 H), 7.20 (br s, 5 H), 9.63 $(t, J = 2.0 \text{ Hz}, 1 \text{ H})$. Anal. Calcd for C₁₃H₁₆OS: C, 70.87; H, 7.32. Found: C, 70.63; H, 7.20. This heptenal 29 was oxidized to the sulfone (2.6 equiv of MCPBA, CH_2Cl_2 , room temperature, 6 h) to determine its stereochemistry by using the coupling constant between the olefinic protons: IR (neat) 1735, 1630, 1320, 1150 cm-'; **'K** NMR (CDCl,) 6 1.33-1.97 (m, 4 H), 2.13-2.68 (m, 4 H), 6.31 (dt, *J* = 15.0 and 1.2 Hz, 1 H), 6.98 (dt, *J* = 15.0 and 6.6 Hz, 1 H), 7.43-7.70 (m, 3 H), 7.77-8.03 (m, 2 H), 9.70 (t, *J* = 2.0 Hz, 1 H).

Stereochemistry in the Reactions of (Z) - and (E) -Allyltributylstannyl **Reagents with Quinones**

Akio Takuwa,* Osamu Soga, and Taeko Mishima

Department of Chemistry, Faculty of Science, Shimane University, Matsue 690, *Japan*

Kazuhiro Maruyama

Department of Chemistry, Faculty of Science, Kyoto University, Kyoto 606, Japan

Received July 30, 1986

In the BF3-catalyzed allylation of quinones with allylstanyl reagents, **(Z)-2-hexenyltributylstannane** (3) is introduced with no retention of the original double-bond stereochemistry, and neryl reagent (5) is introduced with partial loas of olefin stereochemistry. In contrast, **(E)-2-hexenyltributylstannane (4)** and geranyltributylstannane (6) are introduced with complete retention of their olefin geometries.

The stereochemical fate of an introduced moiety into **an** aromatic nucleus is of current importance in synthetic organic chemistry. Because of high interest in the synthesis of naturally occurring quinones, the stereoselective introduction of **all** (E)-prenyl functions into the p-quinone nucleus has been extensively investigated.¹ Naruta and

^a The regioisomeric ratio was determined by ¹H NMR spectroscopy and GLPC analysis. ^b The stereochemistry was determined by GLPC analysis and/or ¹H NMR spectroscopy. 'Isolated yield. d'The reaction was performed in the absence of BF₃.OEt₂. 'Isolated yield after acetylation.

his co-workers² recently developed the direct introduction of a prenyl moiety into a p-quinone nucleus by the BF_3 OEt₂-catalyzed-reaction of p-quinones with (E) -polyprenyltrimethylstannanes, and they successfully synthesized a series of coenzyme Q_n ($n = 2-10$), vitamin K, vitamin $K_{2(10)}$, and related polyprenylquinones in which a E configuration at the Δ^{2} position in the products was completely maintained. More recently, we reported that the (E) -2-butenyl group was also introduced with retention of the stereochemistry at the Δ^2 position in the BF₃-mediated reaction of o -quinones with (E) -2-butenyltributylstannane.³ However, the reaction of quinones with (Z) -allylstannyl reagents has been scarcely studied, and the process of introducing a (Z) -allyl moiety is still unsolved.

The allylstannyl reagent chosen for the present study is (Z) -2-hexenyltributylstannane (3), since the lower (Z) -alkenyltributylstannane, for example, (Z) -2-butenyltributylstannane is unstable and undergoes facile isomerization.⁴ For the comparison of the stereochemical fate of the (Z) -2-hexenyl moiety with that of the E isomer, the

reaction of (E) -2-hexenyltributylstannane (4) with quinones was also examined. Similarly, neryl- (5) and geranyltributylstannane (6) were used as polyprenylstannyl reagents.

The reaction was performed by treatment of 1 equiv of quinone with 1.2 equiv of allylstannyl reagent in the presence of 3 equiv of BF₃·OEt₂ in dichloromethane under a nitrogen atmosphere at -78 °C as reported previously.^{3a,5}

In agreement with the results of (E) -2-butenyltributylstannane,^{3a} the reaction of 3 and 4 with 1,2naphthoquinones (1a-d) afforded a mixture of α -adduct (7) and γ -adduct (8), and the regioisomeric ratio (α vs. γ) of the products was strongly affected by the electronic nature of substituent on the quinone nucleus: an electron-donating group resulted in the preferential formation of the α -adduct while an electron-attracting group caused the predominant or exclusive formation of the γ -adduct^{3a} (eq 1 and entries 1-8 in Table I).

In the reaction of p-quinones with 3 and 4, more dramatic aspects in the regioselectivity were observed and

^{(1) (}a) Synder, C. D.; Rapoport, H. J. Am. Chem. Soc. 1974, 96, 8064.
(b) Raynold, R. W.; Manning, M. J.; Swenton, J. S. J. Chem. Soc., Chem.
Commum. 1977, 499. (c) Jackman, L. M.; Schudel, P.; Koffer, M.; Isler, O. Helv. Chim. Acta 1965, 48, 1332. (d) Inoue, S.; Yamagami, R.; Sato, K. Bull. Chem. Soc. Jpn. 1974, 47, 3098.
(2) (a) Maruyama, K.; Naruta, Y. J. Org. Chem. 1978, 43, 3796. (b)

Naruta, Y.; Maruyama, K. Chem. Lett. 1979, 881, 885. (c) Naruta, Y. J.

Org. Chem. 1980, 45, 4097.

(3) (a) Takuwa, A.; Naruta. Y.; Soga, O.; Maruyama, K. J. Org. Chem.

1984, 49, 1857. (b) Maruyama, K.; Takuwa, A.; Soga, O. Nippon Kagaku Kaishi 1985, 362.

⁽⁴⁾ Yatagai, H.; Yamamoto, Y.; Maruyama, K. J. Am. Chem. Soc. 1980, 102, 4548.

⁽⁵⁾ Naruta, Y. J. Am. Chem. Soc. 1980, 102, 3774.

Allyltributylstannyl Reagent-Quinone Reactions *J. Org. Chem., Vol.* **52,** *No.* **7, 1987 1263**

appeared to depend on the bulkiness of the substituent on the quinone nucleus:⁵ p-benzoquinone (2a) and 1,4naphthoquinone **(2c)** gave y-adduct **10,** while 2,5-dimethyl-p-benzoquinone (2b) and 2-methyl-1,4-naphthoquinone $(2d)$ exclusively afforded α -adduct **9** (eq 2, entries 11-17 in Table I).

Turning attention to the stereochemistry at the Δ^{2} position of the α -adducts (7 and 9), we found that the (E)-2-hexenyl group of **4** was introduced with complete retention of the double-bond stereochemistry (entries 2, **4,8,** 14, 17). However, to our surprise, in the reaction of **3** with quinones the (Z) -2-hexenyl group was not introduced with stereochemical retention of the original double-bond, but its configuration was almost completely lost to give preferentially **or** predominantly E product at the Δ^{2} ^t position (entries 1, 3, 7, 13, 16). In order to avoid the possibility of preisomerization of **3** to **4** by the action of BF_3 . OEt₂, the reaction was carried out in the absence of the Lewis acid. 6 Even in such conditions, the E product was preferentially obtained from the reaction of 3-methoxy-1,Qnaphthoquinone **(la)** with **3** (entries 9, The result indicates that the lack of stereoselectivity of **3** is not due to the self-isomerization of **3** to **4,** but it should occur during the course of the reaction.

It has been reported^{3a,5} that the reaction of an allylstannyl reagents with quinones principally proceeds via 1,2-addition and subsequent allyl migration. To clarify the orientation of the initial 1,2-addition of **3** and **4** to quinones, the reaction of **9,lO-phenanthrenequinone** with **3** and **4** was examined. When **9,lO-phenanthrenenquinone** was treated with **3** and **4** respectively in the presence of BF_3 . OEt₂, an identical 1,2-addition product (11, γ -adduct) was obtained from both reactions (eq **3).** Thus the 1,2-

$$
\begin{array}{|c|c|}\n\hline\n0 & + & 3 \text{ or } 4 & \frac{13 \text{BF}_3 \text{OE} t_2}{23 \text{H}_2 \text{O}} \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{|c|c|}\n\hline\n\end{array}
$$
\n
$$
\begin{array}{|c|c|}
$$

addition of 3 and 4 quinones occurs at the γ -allyl terminus, and the resulting 1,2-addition products undergoes allyl migration^{3a,5} ([3,3]-rearrangement) to afford α -adducts (7 and **91.'** In these processes, the olefin geometry of the (E) -2-hexenyl group was maintained, but the olefin geometry of the (Z) -2-hexenyl group was converted to the more stable E configuration during the course of the reaction. This is the reason for the formation of E products ((E) -7 and -9) at the Δ^2 position being predominantly formed in the reaction of the quinones with **3.**

We next examined the reactions of **5** and **6** with quinones in the presence of $BF_3 \cdot OEt_2$. In these reactions the α -adduct (12, 13, or vitamin $K_{2(10)}$) was the sole product, in which the geranyl function was introduced with complete retention of the original stereochemistry at the Δ^2 ^{*'*} position ($E/Z \sim 96/4$). The neryl group was also introduced with retention of olefin stereochemistry but less
stereoselectivity $(E/Z \sim 32/68)$ as shown in Table I (entries $18-23$.⁸ In order to clarify the orientation of these stannyl reagents in the initial 1,2-addition process, we **also** examined the reaction with **9,lO-phenanthrenequinone.** When **9,lO-phenanthrenequinone** was treated with **5** and **6** respectively and quenched at -50 °C, a 1,2-addition product $(14, \alpha$ -adduct^o was obtained in both cases (eq 4).

$$
\begin{array}{|c|c|}\n\hline\n\text{1} & 5 \text{ or } 6 \xrightarrow{-78 \text{--} 50 \text{°C}} 2 \text{--} \text{1} \text{--} \text{2} \text{--}
$$

The results indicate that the initial 1,2-addition of these polyprenylstannyl reagents to quinones occurs at the *a*allyl terminus, because γ -addition of these reagents suffers from more serious steric interactions.^{3a,5} The resulting 1,2-addition intermediates rearranges ([1,3]-rearrangement) to give 12, 13, or vitamin $K_{2(10)}$.¹⁰ During these processes the stereochemistry of the geranyl group is completely maintained and that of the neryl group is maintained to some extent.

In conclusion, the differences in stereoselectivity between **3** and **5** might be caused both by the orientation of the allyl moiety in the initial 1,2-addition $(\alpha - \alpha + \gamma - \alpha)$ and by the mode of rearrangement, which are strongly affected by the steric interaction between the introduced allyl moiety and quinone. Simple steric considerations for the allylstannyl reagents **also** predict the differences in the stereoselectivity. Reagent **3** has a disubstituted double bond while **5** has trisubstituted double bond. Therefore the **Z** configuration of the 2-hexenyl group could be more easily isomerized to the more stable *E* configuration than that of the neryl group. This is suggested **as** an additional reason for maintenance of higher stereoselectivity in the stereochemistry of the neryl group compared to the *(2)-* 2-hexenyl group.

Experimental Section

Infrared spectra were measured with a Hitachi 260-50 spectrometer. Nuclear magnetic resonance spectra were measured with a JEOL MH-100 or GX-270 spectrometer with Me₄Si as internal standard. GC-mass spectra were taken with a JEOL 9H-100 spectrometer. GLPC **analysis** was performed on a Hitachi 613 gas chromatograph equipped with a column of SE-30 **(2** m) or Silicon **DC-550 (4** m). Dichloromethane was distilled from calcium hydride. Quinones were prepared **by** the methods described previously.^{3a,5}

^{(6) 1,}Z-Naphthoquinones react with stannyl reagents such **as** allyl- or crotyltributylstannane in the absence of **BF3.0E4,** but in low efficiency; ref **3.**

⁽⁷⁾ The mechanisms for the formation of γ -adducts, 8 and 10, are also discussed in previous papers; ref 3a and *5.*

⁽⁸⁾ Similar stereoselective introduction of geranyl and neryl functions was observed in the reactions of p-quinones with geranyl- and neryltri-methylstannanes; ref 2c.

⁽⁹⁾ Unfortunately, in spite of several efforts the stereoisomeric ratio of 14 at the Δ^2 -position could not be determined.

⁽¹⁰⁾ The **simiiar** mode of 1,g-addition and subsequent rearrangement were observed in the reaction of quinones with **(3-methyl-2-buteny1)tri**butylstannane; ref 3a and *5.*

(2)-2-Hexenyltributylstannane (3). This stannyl reagent was prepared by the reaction of $(tributylstanny)$ lithium¹¹ with (Z) -2-hexenyl chloride¹² or by the coupling reaction of the boron-stabilized allyl carbanion with tributyltin chloride: 4 bp 145-147 °C (3 mm); NMR (CCl₄) δ 0.90, 1.35 (m, 32 H, 3 C₄H₉ and CH_2CH_3), 1.64 (d, 2 H, CH_2Sn , $J = 8$ Hz), 1.90 (q, 2 H, $C=CCH_2$, $J = 7$ Hz), 4.94 (m, 1 H, C=CHPr), 5.39 (m, 1 H, CH₂CH=C) [The coupling constant $(J = 11 \text{ Hz})$ of the olefinic protons determined by spin-decoupling techniques indicates the *Z* configuration.]; IR (CHCl₃) 2950 (vs), 2920 (vs), 1630 (w, C=C), **1460** (s), 1377 (s), 1065 (s), 860 (s) cm-'. The isomeric purity was >97% Z by GLPC analysis.

(E)-2-Hexenyltributylstannane (4). This stannyl reagent was prepared by the reaction of (tributylstannyl) lithium with (E)-2-hexenyl chloride: bp 150–153 °C (2 mm); NMR (CCl₄) δ 0.90, 1.40 (m, 32 H, 3 C_4H_9 and CH_2CH_3), 1.63 (d, 2 H, CH_2Sn , $J = 7$ Hz), 1.90 (q, 2 H, C=CCH₂, $J = 7$ Hz), 5.25 (m, 2 H, CH=CH) [The coupling constant $(J = 16 \text{ Hz})$ of the olefinic protons determined by spin-decoupling techniques indicates the *E* configuration.]; IR (CHCl₃) 2950 (vs), 2920 (vs), 1645 (w, C=C), 1460 (s). 1375 (s), 1063 (s), 858 (s) cm-'. The isomeric purity was >96% *E* by GLPC analysis.

Neryltributylstannane **(5).** This stannyl reagent was prepared by the reaction of (tributylstanny1)lithium with neryl chloride according to Naruta's method:¹³ bp 179-182 °C (2 mm); NMR (CCl₄) δ 0.90, 1.36 (m, 27 H, 3 C₄H₉), 1.58, 1.65 (each *s*, 11 H, 3 CH, and CH,Sn), 1.93 (m, **4** H, CH,CH2), 4.96 (m, 1 H), 5.24 (br t, 1 H, $J = 7$ Hz); IR (CCl₄) 2960 (vs), 2925 (vs), 1460 (s), 1378 (s), 1070 (m) cm^{-1} . The isomeric purity ($>97\%$ Z) was determined by GLPC analysis.

Geranyltributylstannane **(6).** This stannyl reagent was prepared by the reaction of **(tributylstanny1)lithium** with geranyl chloride according to Naruta's method:¹³ bp 177-178 °C (2 mm); NMR (CCl₄) δ 0.83 and 1.36 (m, 27 H), 1.51 (s, 3 H, Δ^{2} -(E)-CH₃), 1.57, 1.63 (each br s, 8 H, terminal CH₃ and CH₂Sn), 1.94 (m, 4 H), 4.98 (m, 1 H), 5.20 (br t, 1 H, $J = 8$ Hz); IR (CCl₄) 2955 (vs), 2930 (vs), 1455 (s), 1375 (s), 1063 (m) cm^{-1} . The isomeric purity (96% **E)** was determined by GLPC analysis.

General Reaction Procedure. To a dichloromethane solution (10 mL) of a quinone (0.5 mmol) was added BF_3 OEt_2 (1.5 mmol) under N₂ at -78 °C. After a few minutes an allylstannyl reagent (0.6 mmol) was added dropwise, and then the temperature of the resulting solution was elevated to 0 "C. The reaction mixture was quenched with 5 mL of saturated aqueous NaCl solution, followed by extraction with CH_2Cl_2 . The organic phase was washed with water and dried over $\operatorname{Na_2SO_4}$. After evaporation of the solvent, acetic anhdride-pyridine or Ag_2O was added to the resulting mixture. The product was isolated by preparative layer chromatography, developing with chloroform, benzene, or an ether-hexane mixture. The allyl-substituted products were further purified by preparative TLC or by recrystallization. The isomeric purity and regioisomeric ratio were determined by GLPC and/or NMR analyses, and the results are given in Table I.

Reactions **of** *(2)-* and **(E)-2-Hexenyltributylstannane (3** and **4)** with Quinones (eq 1 and 2, Table **I). A.** The reaction of 1,2-naphthoquinone (la) with **3** and **4** was undertaken according to the general procedure. The product was isolated and purified by preparative TLC, developing with chloroform. The *R,* 0.65 band contained a mixture of 7a and 8a, a pale yellow oil: NMR (CCl₄) δ 0.86 (br t, CH₃, of α and γ , $J = 7$ Hz), 1.35, 1.93 (each m, CH_2CH_2 of α and γ), 2.18, 2.28 (each s, OCOCH₃ of α and γ), 3.97 (d, CH₂ of α , $J = 6$ Hz), 4.02 (m, CH of γ), 5.05 (m, C=CH₂ of γ), 5.55 (m, CH=CH of α), 5.90 (m, CH=C of γ), 7.10-7.98 (m, Ar H of α and γ); IR (CCl₄) 2955, 2930, 1780, 1368, 1205, 810 cm-'. GC-MS analysis indicated that three isomeric components $((Z)$ - and (E) -7a and 8a) were contained in the mixture [each M⁺ *(m/z)* 326)

B. The reaction **of** lb with **3** and **4** was carried out according to the general procedure. The product was isolated and purified by preparative TLC, developing twice with chloroform. The R_f 0.60 band contained a mixture of 7b and **8b,** a pale yellow oil: NMR (CCl₄) δ 0.96 (m, CH₃ of α and γ), 1.28, 1.93 (m, CH₂CH₂ of α and γ), 2.14, 2.26 (each s, OCOCH₃ of α and γ), 3.73 (m, ArCH₂ of α and CH of γ), 3.83 (s, CO₂CH₃ of α and γ), 5.08 (m, C=CH₂ of γ), 5.55 (m, CH=CH of α), 6.13 (m, CH=C of γ), 7.35-8.25 (m, Ar H of α and γ); IR (CHCl₃) 3005, 2950, 2925, 1780, 1725, 1362, 1180, 1020 cm⁻¹

C. The reaction of IC with **3** and **4** was carried out according to the general procedure. After routine isolation and purification by preparative TLC (chloroform, two developments), γ -adduct **8c** was obtained as a yellow oil: NMR (CCl₄) δ 0.82 (t, 3 H, CH₃, $J = 7$ Hz), 1.20 (m, 2 H, CH₂), 1.93 (br t, 2 H, CH₂, $J = 7$ Hz), 2.12, 2.26 (each s, 6 H, OCOCH₃), 2.38 (s, 3 H, COCH₃), 3.61 (m, 1 H, CH), 5.02 (m, 2 H, C=CH₂), 6.22 (m, 1 H, CH=C), 7.30-8.13 (m, 4 H, Ar H); IR (CHC1,) 2950, 2925,1780, 1723,1362, **1180** cm^{-1} .

Anal. Calcd for $C_{22}H_{24}O_6$: C, 71.72; H, 6.57. Found: C; 71.49; H, 6.69.

D. The reaction of ld with **3** and **4** was carried out according to the general procedure. After routine isolation and purification by preparative TLC (chloroform, three developments), α -adduct 7d was obtained, a colorless oil: NMR (CCl₄) δ 0.81 (t, CH₃ of $E, J = 7$ Hz), 0.97 (t, CH₃ of $Z, J = 7$ Hz), 1.30, 1.90 (each m, CH₂CH₂), 2.18, 2.25 (each s, OCOCH₃), 3.67 (m, ArCH₂), 3.71 (s, OCH₃), 5.40 (m, CH=CH), 7.19-7.82 (m, Ar H); IR (CHCl₃) 2950, 2920, 1775, 1367, 1185, 1172, 1093, 1015 cm-'. GC-MS analysis also showed that the product contained two isomeric components *[(E)-* and (Z)-7d: each M^{+} (m/z) 356].

The reaction of 1d with 3 and 4 in the absence of BF_3 OEt_2 was carried out by the following procedure. To a dichloromethane solution of Id (1 equiv) was added the stannyl reagent (1.3 equiv) at -78 °C under a nitrogen atmosphere. The reaction mixture was warmed to 0 °C and quenched with water, followed by extraction with $CH₂Cl₂$. The combined organic phase was dried and evaporated, and then the resulting oil was treated with acetic anhydride-pyridine. Usual workup gave 7d.

E. The reaction of 2a with **3** and **4** was carried out according to the general procedure. The product was isolated and purified by preparative TLC, developing twice with benzene. The R_f 0.43 band contained γ -adduct 10a, a yellow oil: NMR (CCl₄) δ 0.92 $(t, 3 H, CH_3, J = 7 Hz), 1.18-1.63$ (m, 4 H, CH₂CH₂), 3.42 (q, 1) H, CH, $J = 7$ Hz), 5.06 (m, 2 H, C=CH₂), 5.70 (m, 1 H, CH=C), 6.43 (s, 1 H, quinonoid **R),** 6.66 (s, 2 H, quinonoid H); IR (CHCl,) 2952, 2930, 1662, 1300, 920 cm⁻¹.

F. The reaction of 2b with **3** and **4** was carried out according to the general procedure. After acetylation with acetic anhydride-pyridine, the product was isolated and purified by preparative TLC, developing twice with chloroform. The R_f 0.80 band contained **2,5-dimethyl-3-(2-hexenyl)benzene-1,4-diyl** diacetate, a colorless oil: NMR (CC14) 6 0.85 (t, 3 H, CH,, *J* = 7 Hz), 1.31, 1.93 (each m, 4 H, CH_2CH_2), 1.97 (s, 3 H, ring CH_3), 2.02 (s, 3 H, ring CH₃), 2.15 (s, 6 H, OCOCH₃), 3.13 (br s, 2 H, CH₂), 5.22 (m, 2 H, CH=CH), 6.60 (s, 1 H, Ar H); IR (CHCl₃) 2950, 2920, 1760, 1375, 1180 cm-'.

Anal. Calcd for $C_{18}H_{24}O_4$: C, 71.03; H, 7.95. Found: C, 70.81; H, 7.89.

G. The reaction of 2c with **4** was carried out according to the general procedure. The product was isolated and purified by preparative TLC, developing twice with benzene. The *R,* 0.62 band contained γ -adduct 10c, a yellow oil: NMR (CCI₄) δ 0.95 (t, 3 H, CH₃, $J = 7$ Hz), 1.25-1.77 (m, 4 H, CH₂CH₂), 3.72 (q, 1) H, CH, $J = 7.5$ Hz), 5.20 (m, 2 H, C=CH₂), 5.90 (m, 1 H, CH=C), 6.75 (s, **1** H, quinonoid H), 7.70-8.18 (m, 4 H, Ar H); IR (CHCl3) 2950, 2920, 1660, 1610, 1595, 1325, 1302, 1260 cm-'.

H. The reaction of 2d with **3** and **4** was carried out according to the general procedure. The product was isolated and purified by preparative TLC, developing twice with 32 ether/hexane. The R_t 0.82 band contained α -adduct 9d, a yellow oil: NMR (CCl₄) δ 0.86 and 0.96 (each t, 3 H, trans and cis side chain CH₃, $J =$ $7 Hz$, 1.35, 1.95 (each m, 4 H, CH_2CH_2), 2.15 (s, 3 H, ring CH₃), 3.30 (d, 2 H, CH₂, $J = 6$ Hz), 5.45 (m, 2 H, CH=CH), 7.62-8.10 $(m, 4$ H, Ar H); IR (CCl₄) 2950, 2920, 1660, 1290 cm⁻¹. GC-MS analysis showed that the product contained two isomeric com-

⁽¹¹⁾ Tamborski, C.; Ford, F. E.; Soloski, E. J. *J. Org. Chem.* **1963**, 28, **237.**

⁽¹²⁾ Stannylation of 2-butenyl chloride with stannyllithium has been reported to proceed with retention of the stereochemistry at the **A'-** position. Matarasso-Tchiroukhine, E.; Cadiot, P. *J. Organomet. Chem.* **1976,** 121, 155.

 (13) These coupling reactions proceed via an S_N2 mechanism with perfect retention of the Δ^2 stereochemistry of the polyprenyl halides; ref $2c.$

ponents $[(E)$ - and (Z) -9d: each M⁺ (m/z) 254].

Reactions of 3 and 4 with 9,lO-Phenanthrenequinone (eq 3). The stannyl reagent **3** (179 mg, 0.48 mmol) was added to a dichloromethane solution (12 mL) of the quinone (83.2 mg, 0.4 mmol) and $BF_3 OEt_2$ (170 mg, 1.2 mmol) at -78 °C under N_2 . The reaction mixture was warmed to -45 "C and then quenched with a saturated aqueous NaCl solution, followed by the usual workup. The product was isolated by preparative TLC, developing with 1:1 ether/hexane. The R_f 0.65 band contained 103 mg (88%) of γ -adduct 11, pale yellow prisms: mp 133-135 °C; NMR (CDCl₃) δ 0.68, 1.25 (each m, 7 H, CH₂CH₂CH₃), 2.20 (m, 1 H, CH), 4.10 $(s, 1 H, OH), 4.42-5.00$ (m, $2 \overline{H}, C=CH_2$), 5.53 (m, 1 H, CH=C), 7.33-8.00 (m, 8 H, Ar H); IR (KBr) 3490,2940,1685,1600,1443, 1000,920, 763, 730 cm-'.

Anal. Calcd for $C_{20}H_{20}O_2$: C, 82.16; H, 6.89. Found: C, 81.77; H, 7.21.

The reaction with stannyl reagent **4** was performed according to the same procedure described above. Workup afforded **11** (73 mg, 63%):

Reactions of Neryltributylstannane (5) and Geranyltributylstannane (6) with Quinones. A. The stannyl reagent **5** was added to 1,2-naphthoquinone, **la**, and $BF_3 \cdot OEt_2$ in CH_2Cl_2 at -78 °C, followed by the general reaction procedure. After acetylation, the product was isolated and purified by preparative TLC (developing twice with 3:2 ether/hexane) to afford **12:** 66% Δ^2 -Z; a pale yellow oil; **NMR** (CCl₄) δ 1.60 (s, terminal trans-CH₃), 1.66 (s, cis-CH₃), 1.74 (s, CH₃ nearest ring), 2.16 (br, CH₂CH₂), 5.42 (m, olefinic H), 7.27-8.15 (m, Ar H); IR (CHCl₃) 2950, 2925, $1770, 1605, 1458, 1365, 1187 \text{ cm}^{-1}.$ 2.23 (s, OCOCH₃), 2.35 (s, OCOCH₃), 3.75 (d, CH₂, $J = 8$ Hz),

B. The stannyl reagent **6** was added to **la** and $BF_3 \cdot OEt_2$ in CH_2Cl_2 at -78 °C, followed by the general procedure. After acetylation, the product was isolated by preparative TLC (developing twice with 3:2 ether/hexane) to afford 12: 95% Δ^{2} -E.

C. The stannyl reagent **5** was added to p-benzoquinone, **2a,** and BF_3 -OEt₂ in CH₂Cl₂ at -78 °C, followed by the general procedure. After acetylation, the product was isolated and purified by preparative TLC (developing with chloroform) to afford **13:** 68% Δ^{2} -Z; oil; NMR (CCl₄) δ 1.54 (s, terminal E-CH₃), 1.60 (s, Z -CH₃), 1.71 (s, CH₃ nearest ring), 2.04 (s, CH₂CH₂), 2.13 (s, OCOCH₃), 2.15 *(s, OCOCH₃)*, 3.12 *(d, CH₂, J = 7 Hz)*, 5.05 *(m,* olefinic H), 6.78 (m, **Ar** H); IR (CHCl,) 2952, 2920, 1758, 1485, 1365, 1168, 1010 cm-'.

D. The stannyl reagent 6 was added to 2a and BF₃.0Et₂ in $CH₂Cl₂$ at -78 °C, followed by the general procedure. After acetylation, the product was isolated by preparative TLC (developing with chloroform) to afford 13: 96% Δ^{2} -E; oil.

E. The stannyl reagent **5** was added to 2-methyl-1,4 naphthoquinone, 2d, and BF₃.OEt₂ in CH₂Cl₂ at -78 °C, followed by the general procedure. After oxidation with Ag₂O, the product was isolated and purified by preparative TLC, developing twice with 2:3 ether/hexane. The R_f 0.78 band contained vitamin $K_{2(10)}$: 67% Δ^2 -Z; all spectral data were coincident with the reported values. $2c$

F. The stannyl reagent 6 was added to 2d and BF₃.0Et₂ in CH_2Cl_2 at -78 °C, followed by the general procedure. After oxidation with *Ag20,* the product was isolated by preparative TLC, developing with 3:7 ether/hexane. The R_f 0.77 band contained vitamin $K_{2(10)}$: 97% Δ^{2} -E; all spectral data were coincident with the reported values. $1a, 2c$

Reactions of 5 and 6 with 9,lO-Phenanthrenequinone (eq 4). The stannyl reagent **5** (154 mg, 0.36 mmol) was added to a CH_2Cl_2 (12 mL) of the quinone (62.4 mg, 0.3 mmol) and BF_3 OEt₂ (128 mg, 0.9 mmol) at -78 °C under N_2 . The reaction mixture was warmed to -50 °C and then quenched with a saturated aqueous NaCl solution (3 mL), followed by the usual workup. The product was isolated and purified by preparative TLC, developing twice with 1:4 ether/hexane. The *Rf* 0.70 band contained 56 mg (54%) of **14:** a pale yellow oil; NMR (CC14) 6 1.20, 1.48, 1.58, 1.69 (each s, total 9 H, side chain CH₃), 1.87 (br, 4 H, CH₂CH₂), 2.44 (d, 2 H, ArCH₂, $J = 8$ Hz), 3.97 (s, 1 H, OH), 4.98 (br m, 2 H, olefinic H), 7.30-8.00 (m, 8 H, Ar H); IR (CCl₄) 3500 (OH), 2960, 2910, 1692, (C=O), 1600, 1450 cm⁻¹.

Anal. Calcd for $C_{24}H_{26}O_2$: C, 83.20; H, 7.56. Found: C, 83.51; H, 7.71.

The reaction of stannyl reagent **6** (205 mg, 0.48 mmol) with **9,lO-phenanthrenequinone** (83.2 mg, 0.4 mmol) in the presence of $BF_3 OEt_2$ (170 mg, 1.2 mmol) was performed according to the same procedure described above. Workup as above afforded **14** (85 mg, 62%).

Directed Alkyl Substitution of the Dodecahedrane Nucleus. The 1,4-Dimethyl, 1,6-Dimethyl, and 1,4,16-Trimethyl Derivatives. **Indanododecahedrane by Stepwise Dehydrogenation of a Benzylated Seco Derivative**

Leo **A.** Paquette* and Yuji Miyahara

Evans Chemical Laboratories, The Ohio State University, Columbus, Ohio *43210*

Received September *2,* 1986

A 1:1 mixture of finely divided titanium metal and 5% platinum on alumina catalyzes the dehydrocyclization of secododecahedrane **3** to **1,6-dimethyldodecahedrane (4).** A small quantity (10-15%) of the monomethyl derivative is coproduced. This demethylation process could be used to synthetic advantage when applied to the trimethyl-substituted secododecahedrane **ll,** the synthesis of which is first detailed. Heating **ll** with the catalyst system at 200 °C (two passes of 36-h duration) affords 1,3,16-trimethyldodecahedrane (12) and the 1,4-dimethyl derivative **(13).** These hydrocarbons were separated by fractional crystallization and characterized spectroscopically. The spectral properties of the three known dimethyldodecahedranes are correlated. A preparation of benzylsecododecahedrane **26** is also detailed. Heating of **26** at 200 "C with the preceding catalyst system leads efficiently to benzyldodecahedrane. Stepwise dehydrogenation has also proven feasible **as** shown by independent conversion to 2,3-indanododecahedrane at 260 "C. The ready formation of a 1,2-disubstituted dodecahedrane is thereby demonstrated.

Historical documentation of attempts **by** organic chemists to prepare dodecahedrane is rich and varied.¹ The

central importance of the polycyclopentanoid CH_{20} array that characterizes this molecule has fostered the development of many creative strategies, only one of which has been sucessful to date. In 1981, we reported acquisition **(1) Eaton,** P. **E.** Tetrahedron **1979, 35,** 2189. of the 1,16-dimethyl derivative and detailed its three-di-